#include <chrono>
#include <cstdint>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <stdint.h>
#include <stdlib.h>

/* AES-128 simple implementation template and testing */

/*
Author: Manuel Thalmann, thalmman@fit.cvut.cz
Template: Jiri Bucek 2017
AES specification:
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
*/

#define WORD(byte0, byte1, byte2, byte3) ((((((uint16_t)(byte3 << 8) | byte2) << 8) | byte1) << 8) | byte0)
#define WBYTE(value, position) (((uint32_t)value >> (position * 8)) & 0xFF)

/* AES Constants */
// AES polynomial
const uint16_t POLYNOMIAL = 0b100011011;

// forward sbox
const uint8_t SBOX[256] = {
    0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
    0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
    0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
    0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
    0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
    0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
    0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
    0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
    0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
    0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
    0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
    0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
    0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
    0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
    0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
    0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
};

// T-boxes
uint32_t T0[256];
uint32_t T1[256];
uint32_t T2[256];
uint32_t T3[256];

const uint8_t rCon[12] = {
    0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
};

/* AES state type */
typedef uint32_t t_state[4];

void hexprint16(uint8_t *p) {
    for (int i = 0; i < 16; i++)
        printf("%02hhx ", p[i]);
    puts("");
}

// **************** AES  functions ****************
uint32_t subWord(uint32_t w) {
    return WORD(SBOX[WBYTE(w, 0)], SBOX[WBYTE(w, 1)], SBOX[WBYTE(w, 2)], SBOX[WBYTE(w, 3)]);
}

void subBytes(t_state s) {
    for (uint8_t i = 0; i < 4; i++) {
        s[i] = subWord(s[i]);
    }
}


void shiftRows(t_state s) {
    for (uint8_t i = 0; i < 4; i++) {
        uint32_t mask = 0xFF << (i * 8);

        for (uint8_t shiftCount = 0; shiftCount < i; shiftCount++) {
            for (uint8_t currentByte = 0; currentByte < 3; currentByte++) {
                // Swap s[currentByte] and s[currentByte + 1]
                s[currentByte] = s[currentByte] ^ (mask & s[currentByte + 1]);
                s[currentByte + 1] = s[currentByte + 1] ^ (mask & s[currentByte]);
                s[currentByte] = s[currentByte] ^ (mask & s[currentByte + 1]);
            }
        }
    }
}

uint8_t xtime(uint8_t a) {
    uint8_t mask;

    if (a & 0b10000000) {
        mask = POLYNOMIAL & 0xFF;
    }
    else {
        mask = 0x00;
    }

    return ((a << 1) ^ mask) & 0xFF;
}

/*
* Key expansion from 128bits (4*32b)
* to 11 round keys (11*4*32b)
* each round key is 4*32b
*/
// Taken from: https://www.brainkart.com/article/AES-Key-Expansion_8410/
void expandKey(uint8_t k[16], uint32_t ek[44]) {
    for (uint8_t i = 0; i < 4; i++) {
        ek[i] = WORD(k[i * 4], k[i * 4 + 1], k[i * 4 + 2], k[i * 4 + 3]);
    }

    for (uint8_t i = 4; i < 44; i++) {
        uint32_t key = ek[i - 1];

        if (i % 4 == 0) {
            key = (key >> 8) | (key << 24);
            key = subWord(key) ^ rCon[i / 4];
        }

        ek[i] = ek[i - 4] ^ key;
    }
}


/* Adding expanded round key (prepared before) */
void addRoundKey(t_state s, uint32_t ek[], short round) {
    s[0] ^= ek[round];
    s[1] ^= ek[round + 1];
    s[2] ^= ek[round + 2];
    s[3] ^= ek[round + 3];
}

void aes(uint8_t *in, uint8_t *out, uint8_t *skey)
{
    //... Initialize ...
    unsigned short round = 0;

    t_state state;

    for (uint8_t i = 0; i < 4; i++) {
        state[i] = WORD(in[i * 4], in[i * 4 + 1], in[i * 4 + 2], in[i * 4 + 3]);
    }

    uint32_t expKey[11 * 4];

    expandKey(skey, expKey);
    addRoundKey(state, expKey, 0);

    for (int i = 1; i < 10; i++) {
        t_state tmp;

        for (int j = 0; j < 4; j++) {
            tmp[j] =
                T0[WBYTE(state[j], 0)] ^
                T1[WBYTE(state[(j + 1) % 4], 1)] ^
                T2[WBYTE(state[(j + 2) % 4], 2)] ^
                T3[WBYTE(state[(j + 3) % 4], 3)];
        }

        memcpy(state, tmp, sizeof(t_state));
        addRoundKey(state, expKey, 4 * i);
    }

    subBytes(state);
    shiftRows(state);
    addRoundKey(state, expKey, 40);

    for (int i = 0; i < 16; i++) {
        if (i < 4) out[i] = WBYTE(state[0], i % 4);
        else if (i < 8) out[i] = WBYTE(state[1], i % 4);
        else if (i < 12) out[i] = WBYTE(state[2], i % 4);
        else out[i] = WBYTE(state[3], i % 4);
    }
}

//****************************
// MAIN function: AES testing
//****************************
int main(int argc, char* argv[])
{
    uint32_t cycles = 1000000;
    uint8_t key[16] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff };
    uint8_t in[16] =  { 0xab, 0xcd, 0xef, 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0x01, 0x23, 0x45, 0x67, 0x89};
    uint8_t expected[16] = { 0x1d, 0x07, 0x34, 0x40, 0xeb, 0xbe, 0x24, 0xc5, 0x02, 0x8b, 0xd8, 0x02, 0x65, 0xc8, 0xfb, 0x1d };

    if (argc > 2) {
        std::cerr << "Invalid number of arguments\n";
        exit(EXIT_FAILURE);
    } else if (argc == 2) {
        cycles = std::atoi(argv[1]);
    }

    for (int i = 0; i <= 0xFF; i++) {
        uint8_t a1 = SBOX[i];
        uint8_t a2 = xtime(a1);
        uint8_t a3 = a2 ^ a1;
        T0[i] = WORD(a2, a1, a1, a3);
        T1[i] = WORD(a3, a2, a1, a1);
        T2[i] = WORD(a1, a3, a2, a1);
        T3[i] = WORD(a1, a1, a3, a2);
    }

    const auto start{std::chrono::steady_clock::now()};
    {
        for (int i = 0; i < cycles; i++) {
            aes(in, in, key);
        }
    }
    const auto end{std::chrono::steady_clock::now()};
    const std::chrono::duration<double> elapsed_seconds{end - start};
    auto milliseconds = std::chrono::duration_cast<std::chrono::milliseconds>(elapsed_seconds).count();
 
    std::cout << "AES (" << cycles  << " runs)\nElapsed time: ";
    std::cout << milliseconds << "ms\n"; // Before C++20

    if (cycles == 1000000) {
        for (int i = 0; i < 16; i++) {
            if (in[i] != expected[i]) {
                std::cout  << "Mismatch at out[" << i << "]!\n";
                exit(EXIT_FAILURE);
            }
        }

        std::cout << "Validation successful!\n";
    } else {
        std::cout << "No results for " << cycles << " cycles precomputed. No validation.\n";
    }

    exit(in[0]);
}