Add chapter about complex numbers

This commit is contained in:
Manuel Thalmann 2023-01-11 23:35:06 +01:00
parent b570a6f958
commit 3bfb6d2400
6 changed files with 177 additions and 0 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

View file

@ -64,6 +64,8 @@
- [Jacobi-Verfahren](#jacobi-verfahren) - [Jacobi-Verfahren](#jacobi-verfahren)
- [Gauss-Seidel-Verfahren](#gauss-seidel-verfahren) - [Gauss-Seidel-Verfahren](#gauss-seidel-verfahren)
- [Konvergenz](#konvergenz) - [Konvergenz](#konvergenz)
- [Komplexe Zahlen](#komplexe-zahlen)
- [Rechen-Regeln](#rechen-regeln)
- [Formelbuchstaben](#formelbuchstaben) - [Formelbuchstaben](#formelbuchstaben)
- [Glossar](#glossar) - [Glossar](#glossar)
@ -1213,6 +1215,179 @@ Für alle Matrizen, die diagonal-dominant sind gilt, dass sie für das Jacobi- u
</div> </div>
## Komplexe Zahlen
Der Bereich der Komplexen Zahlen dient dazu, Werte abzubilden, die es eigentlich nicht geben kann.
Beispiel einer komplexen Zahl:
$$x^2 = -1$$
Es gibt keinen Wert, der $-1$ ergibt, wenn er quadriert wird. Es handelt sich also um eine komplexe Zahl.
Dafür wird die imaginäre Einheit $i$ eingeführt mit folgender Eigenschaft:
$$i^2 = -1$$
Für diese Definition wäre das Resultat von $x^2= -1$ also $x = \plusmn{i}$
In Python und in der Elektrotechnik wird der Buchstabe $j$ verwendet.
Komplexe Zahlen $z$ mit $z = x + i \cdot y$ können nicht auf einem Zahlenstrahl dargestellt werden.
Sie können in einem Koordinaten-System eingezeichnet werden, wobei $x$ der reale und $y$ der imaginäre Anteil sind:
![](ComplexNumbers.png)
Dieses Koordinaten-System nennt sich auch **Gaussche Zahlenebene**.
<div class="formula">
***Komplexe Zahlen:***
Imaginäre Einheit $i$:
$$i^2 = -1$$
Komplexe Zahlen $z$:
$$z = x + i \cdot y$$
**Konjugierte** komplexe Zahl:
$$z^* = x - i \cdot y$$
Betrag von $z$:
$$|z| = \sqrt{x^2 + y^2}$$
Menge aller komplexen Zahlen $\mathbb{C}$:
$$\mathbb{C} = \{ z | z = x + i \cdot y \text{ mit } x, y \in \mathbb{R}\}$$
</div>
Veranschaulichung einer konjugierten komplexen Zahl $z^*$:
![](ConjugatedComplexNumber.png)
<div class="letters">
- $\mathbb{C}$: Menge aller komplexen Zahlen
- $x$: Realteil einer komplexen Zahl
- $y$: Imaginärteil einer komplexen Zahl
- $z$: Komplexe Zahl
</div>
<div class="formula">
***Darstellungsformen:***
Es gibt diverse Darstellungsformen für komplexe Zahlen:
- Normalform (auch "algebraische" oder "kartesische" Form):
$$z = x + i \cdot y$$
- Trigonometrische Form:
$$z = r \cdot (\cos(\varphi) + i \cdot \sin(\varphi))$$
- Exponential-Form:
$$z = re^{i \cdot \varphi}$$
</div>
Beispiel einer komplexen Zahl $z$ in der Normalform und der Trigonometrischen Form:
![](TrigonometricComplexNumber.png)
<div class="letters">
- $r$: Die Länge des Vektors einer komplexen Zahl $z$ ($r = |z|$)
- $\varphi$: Der Winkel zwischen der x-Achse und dem Vektor der komplexen Zahl $z$
</div>
### Rechen-Regeln
<div class="formula">
***Rechen-Regeln für komplexe Zahlen:***
Addition:
$$z_1 + z_2 = (x_1 + x_2) + i \cdot (y_1 + y_2)$$
Subtraktion:
$$z_1 - z_2 = (x_1 - x_2) + i \cdot (y_1 - y_2)$$
Multiplikation:
$$z_1 \cdot z_2 = (x_1 \cdot x_2 - y_1 \cdot y_2) +
i \cdot(x_1 \cdot y_2 + x_2 \cdot y_2)$$
Division:
$$\begin{aligned}
\frac{z_1}{z_2} &=
\frac{z_1 \cdot z_2^*}{z_2 \cdot z_2^*} =
\frac{(x_1 + i \cdot y_1) \cdot (x_2 - i \cdot y_2)}{(x_2 + i \cdot y_2) \cdot (x_2 - i \cdot y_2)} \\
&= \frac{(x_1 \cdot x_2 + y_1 \cdot y_2) + i \cdot (y_1 \cdot x_2 - x_1 \cdot y_2)}{x_2^2 + y_2^2} \\
&= \frac{(x_1 \cdot x_2 + y_1 \cdot y_2)}{x_2^2 + y_2^2} + i \cdot \frac{(y_1 \cdot x_2 - x_1 \cdot y_2)}{x_2^2 + y_2^2}
\end{aligned}$$
</div>
Visualisierung von Addition und Subtraktion zwei komplexer Zahlen $z_1$ und $z_2$:
![](ComplexNumberMath.png)
<div class="formula">
***Potenzieren in der Polarform:***
Für komplexe Zahlen in der Normalform gilt folgendes:
- Sei $n \in \mathbb{N}$:
$$z^n = (r \cdot e^{i \cdot \varphi})^n = r^n \cdot e^{i \cdot n \cdot \varphi} =
r^n \cdot (\cos(n \cdot \varphi) + i \cdot \sin(n \cdot \varphi))$$
</div>
<div class="formula">
***Fundamentalsatz der Algebra:***
Eine algebraische Gleichung $n$-ten Grades mit komplexen Koeffizienten und Variablen $a_i, z \in \mathbb{C}$
$$a_n \cdot z^n + a_{n - 1} \cdot z^{n - 1} + \dots + a_1 \cdot z + a_0 = 0$$
besitzt in der Menge $\mathbb{C}$ der komplexen Zahlen genau $n$ Lösungen.
</div>
<div class="formula">
***Ziehen der Wurzel einer komplexen Zahl:***
Die Gleichung für das Ziehen einer Wurzel $n$ der komplexen Zahl $a$ lautet: $z^n = a$.
Für die Lösung dieser Gleichung existieren genau $n$ verschiedene Lösungen in der Menge $\mathbb{C}$:
$$z_k = r \cdot (\cos(\varphi_k + i \cdot \sin(\varphi_k)) = r \dot e^{i \cdot \varphi_k}$$
für $k = 0, 1, 2, \dots, n - 1$:
mit
$$r = \sqrt[n]{r_0}$$
$$\varphi_k = \frac{\varphi + k \cdot 2 \cdot \pi}{n}$$
Die Bildpunkte der Ergebnisse liegen in der komplexen Zahlenebene auf einem Kreis um den Nullpunkt mit dem Radius $r = \sqrt[n]{r_0}$ und bilden die Ecken eines regelmässigen $n$-Ecks.
</div>
Visualisierung des Ziehens der $6$-ten Wurzel einer komplexen Zahl $z$:
![](RootComplexNumber.png)
## Formelbuchstaben ## Formelbuchstaben
<div class="letters"> <div class="letters">
@ -1226,6 +1401,8 @@ Für alle Matrizen, die diagonal-dominant sind gilt, dass sie für das Jacobi- u
- $e$: Exponent der Maschinenzahl - $e$: Exponent der Maschinenzahl
- $H$: Housholder-Matrix (siehe $QR$-Zerlegung) - $H$: Housholder-Matrix (siehe $QR$-Zerlegung)
- $I$: Identitäts-Matrix (Matrix, überall den Wert $0$ und auf der Diagonalen den Wert $1$ hat) - $I$: Identitäts-Matrix (Matrix, überall den Wert $0$ und auf der Diagonalen den Wert $1$ hat)
- $i$: Imaginäre Einheit für die Darstellung komplexer Zahlen
- $j$: Alternative Schreibweise für $i$ in Python und in der Elektrotechnik
- $K$: Konditionszahl - $K$: Konditionszahl
- $L$: Untere Dreiecksmatrix/Normierte Matrix - $L$: Untere Dreiecksmatrix/Normierte Matrix
- $m$: Mantisse (Darstellbarer Bereich der Maschinenzahl) - $m$: Mantisse (Darstellbarer Bereich der Maschinenzahl)