From cf7fc7ad0e5b296c363c7c972b59b2e70243e11f Mon Sep 17 00:00:00 2001
From: Manuel Thalmann <m@nuth.ch>
Date: Sun, 19 Jun 2022 20:58:07 +0200
Subject: [PATCH] Fix incorrect notes

---
 Notes/Semester 2/AN2 - Analysis 2/Zusammenfassung SEP.md | 4 ++--
 1 file changed, 2 insertions(+), 2 deletions(-)

diff --git a/Notes/Semester 2/AN2 - Analysis 2/Zusammenfassung SEP.md b/Notes/Semester 2/AN2 - Analysis 2/Zusammenfassung SEP.md
index 2353f51..df56a6d 100644
--- a/Notes/Semester 2/AN2 - Analysis 2/Zusammenfassung SEP.md	
+++ b/Notes/Semester 2/AN2 - Analysis 2/Zusammenfassung SEP.md	
@@ -370,8 +370,8 @@ $$\begin{split}
 Für das aktuelle Beispiel ergibt das folgendes:
 
 $$\begin{split}
-  \int{\frac{2}{x - 1} + \frac{2}{x - 2} + \frac{3}{(x - 2)^2}}dx & = \int{\frac{2}{x - 1}} - \int{\frac{2}{x - 2}} + \int{\frac{3}{(x - 1)^2}} \\
-  & = 2 \cdot \int{\frac{1}{x - 1} - 2 \cdot \int{\frac{1}{x - 2}}} + 3 \cdot \int{\frac{1}{(x - 2)^2}} \\
+  \int{\frac{2}{x - 1} + \frac{2}{x - 2} + \frac{3}{(x - 2)^2}}dx & = \int{\frac{2}{x - 1}} - \int{\frac{2}{x - 2}} - \int{\frac{3}{(x - 1)^2}} \\
+  & = 2 \cdot \int{\frac{1}{x - 1} - 2 \cdot \int{\frac{1}{x - 2}}} - 3 \cdot \int{\frac{1}{(x - 2)^2}} \\
   & = 2 \cdot \ln(|x - 1|) - 2 \cdot \ln(|x - 2|) - 3 \cdot \frac{1}{x - 2} + c
 \end{split}$$