
Security Lab – Authorization in Linux 1

© ZHAW / SoE / InIT – Gürkan Gür, Stephan Neuhaus, Arno Wagner, Ariane Trammell

Security Lab – Authorization in Linux

VMware

This lab must be done with the Ubuntu image.

1 Introduction

In this lab, you are going to broaden and deepen your knowledge on authorization in several ways.

• Part 1: You are going to play around with the default way of doing discretionary access con-

trol (DAC) in Linux to see its merits and limits. Next, you’ll get in touch with POSIX ACLs.

POSIX ACLs are one way to overcome (some) of the limits of the default DAC approach in

Linux. Successful completion of this part is worth 2 lab points.

• Part 2: An exercise where you will configure permissions to match the security policy of the

(fictional) company “SecuSoft & Consult AG”. Successful completion of this exercise is

worth 2 lab points.

• Part 3: Implementation of mandatory access control (MAC). You are going to solve some

tasks related to MAC with AppArmor. This topic is also concluded with an exercise where we

ask you to secure an application with AppArmor. Successful completion of this exercise is

worth another 2 lab points.

2 Part 1: Discretionary Access Control (DAC) in Linux

In today’s general purpose operating systems (Unix/Linux, Windows, macOS,…), the predominant

access control model is discretionary access control: The owner of an object (e.g. a file) controls

which subject(s) (user, computer, group,…) can have access to it and to what degree. In the first part

of this lab, we are looking at file system-related DAC in Linux.

If we say file system-related DAC in Linux, then we refer to more than just ordinary files. As the

Linux expert knows, Linux adheres to the principle that “everything is a file”: devices, sockets, pipes,

and other things such as the list of file systems currently mounted, are accessible via (special) files.

2.1 The traditional UNIX-style permission model

The Linux security model is based on the one used in UNIX systems. On a Linux system, every file is

owned by a user (the owner) and a group (the group owner). There is also a third category of users

typically called others (or world), since this category stands for all users that are neither the owner of

the file nor belong to the group owning the file. For each category of users (owner, group, others),

read, write and execute permissions can be granted or denied. Note that depending on the type of the

file, the permissions have a different meaning – we come back to this later. First, let’s have a look at

the permissions. You do not need to touch the Ubuntu-Image yet, we use some sample outputs to dis-

cuss them.

If you use the ls command with option -l, you get a listing of the content of the current directory

including the file permissions for the three user categories. The permissions are described by nine

characters that follow the first character, which describes the file type.

-rw-rw-r-- 1 user1 group1 5 Jan 15 12:39 README.txt

group owning the file

user owning the file

number of hard links to the file

o
w

n
er p

erm
.

g
ro

u
p

 p
erm

.

o
th

ers p
erm

.

Security Lab – Authorization in Linux 2

© ZHAW / SoE / InIT – Gürkan Gür, Stephan Neuhaus, Arno Wagner, Ariane Trammell

The permissions are always in the same order: read, write, execute for the user, the group and others.

The following tables show the meaning of the different permission and file type values:

Code Meaning

- or 0 access right is not granted.

r or 4 read permission is granted

w or 2 write permission is granted

x or 1 execute permission is granted
Table 1 Meaning of permission codes

Code Meaning

- Regular file

b Block special file

d Directory

l Symbolic link

n Network file

p FIFO

s Socket
Table 2 Meaning of file type codes

Let’s look at the following example:

alice@home-pc:~$ ls -l

drwxr-x--- 2 alice www-data 5 Jan 15 12:39 public_html

-rw-rw-r-- 1 root root 5 Jan 15 12:39 README.txt

The first file is a directory (code d). The user alice is the owner and has read, write and execute per-

missions. Users belonging to the group www-data have read and execute permissions. All other users

have no permissions at all. The second entry is a regular file (code -). The user root and users in the

group named root can read the file and write to it. Other users are only allowed to read it.

Note that read, write and execute permissions on directories have the following meaning:

• Read: You can look at the directory file which lists the files and directories it contains. You don’t

need read access on the files themselves to list them.

• Write: You can modify the content of the directory file. Hence, to delete, rename or move a file,

you MUST have write permissions for the directory containing the file! The write permission on

the file itself just allows you to alter its content but not to delete, rename or move it! Since dele-

tion of a file is manipulating the contents of the directory file, you don’t need write access on the

file itself to delete it.

• Execute: You can think of read and execute on directories this way: directories are data files that

hold two pieces of information for each file within: (1) the file's name and (2) its inode number1.

To access a file, you need to know both pieces of information. Read permission is needed to ac-

cess the names of files in a directory. Execute (or sometimes called search) permission is needed

to access the inodes of files in a directory, if you already know the file's name. Hence, to access a

file by its file name, as e.g., in the following command: cat /home/alice/readme.txt

you need the appropriate rights on the file itself but also execute permission on the directory con-

taining it and all its parent directories (/, /home, and /home/alice). If you know the inode,

you could access it directly without the need for appropriate execute permissions on the directo-

ries. However, in Linux/UNIX systems, this can only be done with special tools requiring root

privileges.

1 In Linux/Unix systems, the inode number uniquely identifies a file in a file system. An inode number is basical-

ly an “address” that the operating system must know to access the file.

Security Lab – Authorization in Linux 3

© ZHAW / SoE / InIT – Gürkan Gür, Stephan Neuhaus, Arno Wagner, Ariane Trammell

In addition to these basic permissions, there are three additional bits of information. If any of these bits

is set, different characters than the x are used in the permissions (s for SUID/SGID and t for the sticky

bit):

• Setuid bit (SUID): If this bit is set and the file is executed by an arbitrary user, the process will

have the same rights as the owner of the file being executed.

• Setgid bit (SGID): Same as above, but inherits rights of the group owning the file. For directories,

it also may mean (system dependent) that when a new file is created in the directory it will inherit

the group of the directory (and not the group of the user who created the file).

• Sticky bit: This bit was used to trigger processes to "stick" in memory after finishing execution.

Today, this usage is obsolete and currently, its use is system-dependent. Linux ignores the sticky

bit on files. On directories, it means that files may only be unlinked (deleted) or renamed by root

or the owner of the file.

Ok, that’s enough of theory for the moment. Now login to your Ubuntu vm (user user, pwd: securi-

tyzhaw) and open a terminal. Prepare the environment by running the following script (using sudo

makes sure the script is executed as user root):

• git clone https://github.zhaw.ch/IS/teaching_public.git

• cd teaching_public/ITS/Lab7_authorization/authorization

• sudo ./setSimpleDAC.sh

Change to the directory DAC and list its contents by entering:

• cd DAC

• ls -l

The administrator who set this up wanted to achieve the following goals:

1. The contents of the userX folders should be under full control of user userX.

2. Group groupX should be able to list the contents of the userX folders and access any file or

folder if the permissions on them allow it.

3. Other users (not userX and not in the group groupX) should not be able to extract any infor-

mation about the contents of the folder userX. However, if it contains, e.g., a file with read

permissions for everyone, they should be able to access it (if they know the name and path).

4. The public folder is open to everyone. Any user should be able to create files or directories in

the public folder. It is then up to the creator/owner to set appropriate access permissions.

5. The management folder is owned by the user root and the group management which both have

full control. All other users should not be able to access this folder, even if a user in the man-

agement group accidentally grants read permissions to everyone on one of his files.

6. The development folder is owned by the user root and the group developers which both have

full control. All other users should be able to browse through this folder and list its contents.

Question: Compare the goals with the information extracted from the directory listing and note down

which goals are not met and what must be changed so that they are met.

Now, with the help of the command chmod, make the above changes so that the goals are met.

Usage: chmod <permissions> <file or directory>

Security Lab – Authorization in Linux 4

© ZHAW / SoE / InIT – Gürkan Gür, Stephan Neuhaus, Arno Wagner, Ariane Trammell

While <permissions> can be specified in different ways, the shortest form is the numeric form (see

Table 1) where you add up the permissions on a per category basis resulting in three numbers -one for

each category.

 Example: chmod 700 example.txt // is equal to permissions rwx------

Question: What are the commands you need to execute to make these changes?

Question: Now that the goals are met, is it possible to protect all of your files located in the public

folder from being renamed or deleted by other users? And how about files in a folder you create within

the public folder? Justify your answer.

Hint: Recall the description of the Sticky bit and look at the permissions of the files in the public fold-

er (ls -l public). Try to delete e.g., the file file_user2.txt owned by user2 (rm pub-

lic/file_user2.txt) where you have read permissions only (the user user falls into the catego-

ry others for this file). Try to do the same with the file in the dir_user2 subfolder (rm pub-

lic/dir_user2/file_user2.txt).

Let’s now develop this scenario further and look at how we can meet the following additional re-

quirement:

• The structure should include a folder called meetings where both, the management group and the

development group should have full access.

Multiple groups requiring access to the same directory is actually quite a common requirement: Com-

panies typically make use of groups to reflect a company’s structure (teams, departments, country-

offices…) and to group, e.g., people with similar tasks or functions and it is reasonable to assume that

a company manages a lot of information which should be accessible to people in more than just one

group. The technical specifications of a product should, e.g., be accessible to the project team respon-

sible for this product (to keep it up-to-date) but also to product managers and sales personnel. In many

cases, it may also be required that different groups are assigned different permissions, unlike our re-

quirement from above.

Question: How would you fulfill the above requirement with Unix-style permissions and groups? You

don’t have to implement the solution, just write down how you’d basically solve this. Why is the solu-

tion not optimal from a management/maintenance point of view?

Hint: Linux offers the following commands that you would use in practice to fulfill this task – check

the manpages of these commands for details: addgroup <group> creates a new group. adduser

<user> <group> adds a user to a group. And groups <user> lists the groups of a user.

Security Lab – Authorization in Linux 5

© ZHAW / SoE / InIT – Gürkan Gür, Stephan Neuhaus, Arno Wagner, Ariane Trammell

Now let’s specify another constraint for the meetings folder: The permissions for users in the man-

agement group should be different from those in the development group.

Question: Why can’t you implement this constraint with the simple default Linux DAC mechanism?

This clearly shows you that the Linux DAC mechanism – while functional and simple – has its limita-

tions if the requirements grow a bit more complex. To have more fine granular control and to mitigate

maintenance issues, it is necessary to switch to a more powerful ACL mechanism.

2.2 POSIX ACLs

Most of the Unix- and Unix-like operating systems (e.g. Linux, BSD, or Solaris) support POSIX.1e

ACLs, based on an earlier POSIX draft that was abandoned. We won’t go into all the details of POSIX

ACLs, but will focus on one feature that allows to solve the problem of assigning different permis-

sions to the development and management groups for the meetings folder. This should demonstrate

that POSIX ACLs are more powerful than the Linux DAC mechanism.

In general, POSIX ACLs can be used for situations where the traditional file permission concept does

not suffice. They allow the assignment of permissions to individual users or groups even if these do

not correspond to the owner or the owning group of a file. With POSIX ACLs, complex scenarios can

be realized without implementing complex permission models on the application level. The ad-

vantages of POSIX ACLs are for instance clearly evident in situations such as the replacement of a

Windows file server by a Linux file server. Since Windows supports fine granular control of permis-

sions, the Linux file server would be unable to implement them with simple Linux permissions.

To use POSIX ACLs, you have to configure the file system to use it. This is simple and only requires

you to add the option acl to the line for the root file system in /etc/fstab. You need to do this as root

(by using sudo). Do this now in the editor of your choice (e.g., vi or nano). The modified line should

look like this:

 #<filesystem> <mount-point> <type> <options> <dump> <pass>

 UID=<number> / ext4 acl,errors=remount-ro 0 1

To make Linux aware of it, you have to remount the root files system by entering:

• sudo mount -o remount /

This points us at a VERY IMPORTANT aspect of discretionary access control using ACLs (permis-

sions stored with the objects): Whether or not these ACLs are taken into account depends on whether

they are respected by the operating system! If you are e.g., able to mount a POSIX ACL protected file

system without the acl flag, you might get more permissions than you actually have (you’ll try this out

later). That’s certainly one good reason why mount operations typically require root privileges. Of

Security Lab – Authorization in Linux 6

© ZHAW / SoE / InIT – Gürkan Gür, Stephan Neuhaus, Arno Wagner, Ariane Trammell

course, if you have access to the hardware, you could also just take the hard drive and mount it in a

system of your choice with a file system driver of your choice.

Let’s now experiment a bit with POSIX ACLs and finally create the meetings folder with appropriate

rights for the developer and manager groups. Let’s start by creating the meetings directory and check-

ing its permissions. Enter the following commands:

• sudo su

• cd authorization/DAC

• umask 027

• mkdir meetings

• chown root:management meetings

• exit (to make sure you are working as user again)

The umask determines which permissions will be masked off when the directory (or file) is created. A

umask of 027 (octal) disables write access for the owning group and read, write, and execute access

for others. It basically inverts the meaning of the codes in Table 1 (e.g., 0=no permissions  0=all

permissions 2=write access  2=disables write access etc.).

Now, execute the following command:

• ls -dl meetings

Question: Who is currently allowed to do what with files in this directory?

Note that so far, we haven’t explicitly configured the (POSIX) ACL of the meetings directory. How-

ever, the basic Linux permissions we configured above become part of the ACL, which can be verified

using the getfacl command, which is used to display the ACL. Enter the following:

• getfacl meetings

You should get the following output:

 # file: meetings/

 # owner: root

 # group: management

 user::rwx

 group::r-x

 other::---

This is nothing else than the base permissions configured above, but displayed in “ACL syntax”:

• The owner (root) of the directory translated to the base user in the ACL (user::), indicated by the

missing name between the two colons (:). Note that the rights (rwx) correspond to the rights de-

fined above.

• Likewise, the group owner (management) is translated to the base group in the ACL (group::),

again indicated by the missing text between the colons (:). The permissions correspond to the

permissions defined above.

Security Lab – Authorization in Linux 7

© ZHAW / SoE / InIT – Gürkan Gür, Stephan Neuhaus, Arno Wagner, Ariane Trammell

• The right of other is also directly inherited from the configured base permission.

If a POSIX ACL contains only an entry for the owner, the owning group and other class – as it does so

far – it is a so-called minimal ACL and the permissions shown by the ls -l command reflect exact-

ly the permissions according to the POSIX ACL.

Once ACLs have been enabled, you can now add additional entries to the ACL, so-called named us-

ers or named groups. Named users or named groups are nothing else than additional users or groups

that can access the file or directory, whereas each user/group can have separate permission. We will

use this to add ACL entries for the management and development group. Note that it doesn’t matter

that we add a named group that is the same as the owning group (management) of the directory – the

effective access permissions of the management group will be determined by combining (adding) the

rights of “both” groups.

Use the setfacl command to add the two named groups:

• grant read, write and execute permissions to the development group by entering:
sudo setfacl -m group:development:rwx meetings

• grant read and execute permissions to the management group by entering:
sudo setfacl -m group:management:rx meetings

To check whether it worked, look at the output of the getfacl command for the meetings directory.

Question: Do the ACL entries reflect the permissions as specified above? Note down the three (!) new

output lines:

The third new line is the mask entry. It is automatically created and its permissions are set to the union

of the permissions of the group owner and all named users and named groups.

Now, check again the output of ls -dl meetings. Interestingly, the permissions for the owning

group are now rwx. The explanation is that when ACLs are used, these permissions are not the one of

the owning group, but represent the mask. The mask represents the upper bound the owning group or

any named user/group can have: if the mask is r-w und a named group has the permissions rwx, the

effective permissions are r-w. Usually, the mask has no notable effect because whenever a named

user/group is added that extends the permissions of the mask, the new permissions are added to the

mask.

Note that the “old” owning group permission is actually replaced (in the file system) with the mask

value, which is why the ls command prints it. The reason for this has mainly to do with backward

compatibility for tools that are not aware of POSIX ACLs and that therefore interpret the standard

permissions: they now simply get the “combined permissions” of any named user/group and the own-

ing group. Note also that the administrator can manually reduce the mask permissions (with chmod in

just the same way as you would adapt the owning group permissions) to reduce the permissions of all

named users/groups and the group owner.

Question: Aside from the permissions of the mask, there is something else that changed: An addition-

al character not present before indicates that for this directory an extended ACL is in effect. What

character is this?

Security Lab – Authorization in Linux 8

© ZHAW / SoE / InIT – Gürkan Gür, Stephan Neuhaus, Arno Wagner, Ariane Trammell

As explained above, according to the ls command, the owning group (management) now has permis-

sions rwx. Is this a problem? They should only have permissions r-x. Test it by trying to create a

file as user1, who is in the management group:

• sudo -u user1 touch meetings/test.txt

Question: What is the result of this test? Explain the result.

Now, disable acl support by modifying /etc/fstab again: alter the acl option into the noacl option2 and

remount the root file system. Do the same test again:

• sudo -u user1 touch meetings/test.txt

Question: What is the result of this test? Explain the result. You can also use ls again to check the

permissions of the management group

This seems strange: After enabling and disabling ACLs, the management group has more permissions

than in the beginning (remember that in the beginning, we gave the management group read and exe-

cute permissions on the meetings directory, which does not allow members of that group to create a

file within the directory). But recalling that the mask replaces the original owning group permissions,

this makes perfectly sense. You can argue this is a security limitation and in fact it is, as the permis-

sions of the owning group are increased in this case although the administrator never actually granted

the write permission to the management group. The morale of the story is that as an administrator, you

simply have to be aware of this: When switching to ACLs, you are likely to stick to it so it’s not a

problem in practice. However, keep in mind that deactivating ACLs does not imply that the permis-

sions are the same as they were before activating them.

3 Part 2: Implementing the security policy of “SecuSoft & Consult AG” using
POSIX ACLs

“SecuSoft & Consult AG” is a (fictional) IT security company. More precisely, it is both a software

producer and a consulting firm. The company produces WebTables, a web application firewall and

NetMonitorIT. Both products as well as the company’s consulting services enjoy a good reputation.

To facilitate the management and sharing of data, the company set up a file server accessible to all

employees. Clearly, there is a lot of information that not everyone should be able to see or modify:

There is, e.g., no a-priori need for a developer to access information from consulting projects or for

consultants to access the data of all consulting projects. Furthermore, since in some projects, the com-

pany cooperates with freelancers or other companies, not only employees but also external people

need access to (selected areas of) the file server.

After a thorough analysis of the processes, the chief security officer (CSO) released a new security

policy for the file server. As the overall policy is quite complex, we consider only parts of it.

2 Simply removing the previously set acl option does not work because permissions have been added. Therefore,

the noacl option is needed to explicitly ignore them.

Security Lab – Authorization in Linux 9

© ZHAW / SoE / InIT – Gürkan Gür, Stephan Neuhaus, Arno Wagner, Ariane Trammell

Let’s now have a look at the structure of the file server, the users and their group and project member-

ships and finally the security policy before we discuss your task in more detail.

3.1 Directory structure of the file server

The directory structure of the file server is as follows (entries not preceded by dashes are files):

|-applications # contains applications

 erp_client

 timesheet_client

|-projects # contains projects

|---consulting

|-----Julius_Baer_I_EB_200908 # banking project

|-------report

|-----Xilinx_TrustDB_200704 # industry project

|-------report

|-staff # Contains directories of employees

|---A

|-----ahas # Directory of employee “ahas”

|-------public

|-------public_html

 (...)

3.2 Users, groups and project memberships

We consider the following users:

• Employees: ahas, ator, dbau, fgla, wmei

• Externals: krol

The following table describes the groups and group memberships:

Groups Description Members

staff All employees of the company are in this group. ahas, ator, dbau, fgla, wmei

ext External people (freelancers, sub-contractors…) krol

consulting All employees working as consultants are in this

group (members are also in staff)

ahas, ator, dbau, wmei

management CEO, CSO, CIO, CTO and members of the board of

directors (members are also in staff)

fgla

pm_banking Project manager(s) for consulting projects in the

banking sector (members are either in staff or ext)

ator

pm_industry Project manager(s) for consulting projects in the in-

dustry sector (members are either in staff or ext)

dbau

These users, groups and memberships will be automatically created by the script fileserver.sh (see be-

low).

In addition, there are two project teams for the two projects defined in the directory structure:

• Julius Baer project: ahas, wmei

• Xilinx project: wmei, krol

This is not created by the script; you have to do this yourself (details see below).

3.3 Security policy

General:

• Use groups, not individual users: Whenever possible, avoid assigning permissions on a per user

basis. It complicates the management of permissions and requires inspecting and updating many

Security Lab – Authorization in Linux 10

© ZHAW / SoE / InIT – Gürkan Gür, Stephan Neuhaus, Arno Wagner, Ariane Trammell

objects when the user switches e.g. from the development to the consulting staff or when he leaves

the company. It is far easier to just modify his group membership(s).

• Default deny: If something is not explicitly allowed by the policy, it is denied.

Resources and Access policy:

• The following table specifies who needs access to what. It contains nearly all necessary infor-

mation you’ll need to solve the task:

Resource Policy

ERP client management must be able to start this application.

Time Sheet client staff and ext must be able to start this application.

projects/ staff and ext can traverse the directory and all subdirectories.

consulting/ consulting can browse it (just this directory). Since all consultants are

also in the staff group, it’s not necessary to give the consulting group

the rights to traverse the projects directory.

consulting/<project>/ Project team members and the appropriate project manager(s) have

full control. management can access files in the report subdirectory.

Since all of these people are either in the staff or ext group no addi-

tional traversal rights must be given for them to reach the consult-

ing/<project> directory.

staff, staff/<A-Z> Employees (staff group) can browse the contents of these folders.

Personal folder

Each employee owns his staff folder (staff/<A-Z>/<employee id>)

and everything it contains. Owners have full control on directories

(rwx) and read/write permissions on files (rw). Employees of the

company (staff group) can access files located in the subfolder public.

The public_html subfolder is reserved for the personal web page. The

user www-data needs access to its content. To help with this task,

there exists a group www-data, and you may assume that the user

www-data is the only member of this group.

Note that “can access files in a directory” means that a file in this folder can be read / modified / exe-

cuted if its file permissions are set accordingly! Deleting and renaming files in this folder should NOT

be possible.

3.4 Task

Your task is now to implement the above policy for the directory structure shown above.

Open a console and become root by entering su - and providing the password root when asked. Re-

enable acl support by modifying /etc/fstab and remounting the root file system as described above.

To generate the users, groups and the directory structure needed for this task, execute the following

command:

 /securitylab/authorization/fileserver.sh

If you need to reset the configuration for this task, run the following command and start over.

WARNING: This command DELETES the entire fileserver/ directory and recreates it from scratch!

 Therefore, do not store any of your files inside the fileserver/ subtree.

 /securitylab/authorization/fileserver.sh clean

Security Lab – Authorization in Linux 11

© ZHAW / SoE / InIT – Gürkan Gür, Stephan Neuhaus, Arno Wagner, Ariane Trammell

The file system of the file server is then “mounted” in /securitylab/authorization/fileserver/. All files

and directories are currently owned by the user and group root and the permissions of all files and di-

rectories are set to 000 (no permissions!).

Take into account the following hints when solving the task:

• To “implement” the two project teams, you have to define two additional groups yourself. Name

them banking (Julius Baer project) and industry (Xilinx project).

• Use a structured approach to solve the problem by, e.g., applying the configurations in sequence

according the table above. Furthermore, it is advisable to put all necessary commands into a file so

you can execute all of them together by executing the file.

• As you may have noticed, with the exception of the two applications and the personal folder, the

policy is just about ACLs on directories. Use the tips and tricks in the box below to apply a modi-

fication to a single file or directory or to multiple files or directories or both.

When you think you are done, you can execute the checkPolicy.pl script to check whether your con-

figuration correctly implements the policy. Execute the script with the following command:

 /securitylab/authorization/checkPolicy.pl

If any problems are detected, you’ll get a description, which will be helpful to correct the configura-

tion. If the script finishes without errors, then you have successfully completed this task and are ready

to get the corresponding lab points.

Tips & Tricks

chown -R nobody:root /home/user #sets the owner of the folder /home/user and everything

 #it contains (-R means recursive) to nobody and the

 #owning group to root

setfacl -R –m group:mygroup:rx /usr #sets read and execute permissions for mygroup for the

 #whole /usr subtree (files and folders)

The following commands affect all files/directories in <list>:

setfacl -m group:mygroup:rx <list> #sets read and execute permissions for mygroup

getfacl <list> #shows the ACL(s)

chmod 700 <list> #set permissions to full control for the owner and to no

 #permissions for owning group/others.

chmod u+rwx <list> #set permissions to full control for the owner while

 #keeping all other.permissions.

<list> can be a single directory or file such as /usr/ or /data/myfile.txt. But it can also be replaced by

an expression returning a list of files and|or directories or both. Examples of such expressions:

/usr/*/*/data/ #All 4rd level directories with name data located in /usr

/usr/*/data/ #All 3rd level directories with name data located in /usr

/usr/data/* #All files and directories in the /usr/data/ directory

/usr/data/*/ #All directories in the /usr/data/ directory

`find /usr/data/` #List of all files and directories in the /usr/data subtree

`find /usr/data/ -type f` #List of all files in the /usr/data subtree

`find /usr/images/ -type d` #List of all directories in the /usr/images subtree

4 Part 3: MAC in Linux with AppArmor

As briefly introduced in the lecture, AppArmor is a security tool designed to provide an easy-to-use

security framework to confine individual applications. By enforcing good behavior, AppArmor proac-

tively protects the operating system and applications from external or internal threats.

AppArmor security policies, called profiles, completely define what system resources individual ap-

plications can access, and with what privileges. Any restrictions made in a profile have precedence

Security Lab – Authorization in Linux 12

© ZHAW / SoE / InIT – Gürkan Gür, Stephan Neuhaus, Arno Wagner, Ariane Trammell

over restrictions from DAC. To enforce this precedence, AppArmor interacts with the Linux Security

Modules (LSM) kernel interface.

A number of default profiles for well-known applications are included with AppArmor. But even ap-

plications for which there is no such profile can be deployed successfully in a matter of hours. To do

so, AppArmor can be configured to log (to /var/log/syslog in Ubuntu) and not prevent access opera-

tions of such an application. If violations are logged but not prevented, the profile is said to operate in

complain mode. The information in the log can then be used to create a profile. To actually prevent

violations, the profile must then be set to enforce mode. However, there are limitations with this ap-

proach since it is difficult to cover all possible use cases necessary to compile a profile that is self-

contained.

In this lab, you are going to develop a profile for the Firefox browser to get familiar with AppArmor

configuration and usage. Clearly, Firefox is an application that is constantly exposed to a hostile envi-

ronment. If Firefox is hijacked, e.g., due to some flaw in its code, an attacker may use Firefox to ac-

cess your home directory or system files or to execute arbitrary code. With access to so many things,

the chance is high that an attacker can exploit another (local) vulnerability to gain root access.

The traditional approach to handle vulnerabilities in an application such as Firefox is to fix the flaws

in the code or the configuration (with a patch) and possibly creating rules for an IDS (remember

Snort?) to detect attacks targeting these vulnerabilities. The approach taken by AppArmor is different.

Instead of a reactive approach fixing things when they are discovered, AppArmor tries to limit damage

proactively: AppArmor confines Firefox by enforcing that only the objects specified in the profile can

be accessed.

The profiles of the applications are stored in separate files in /etc/apparmor.d. The file name of a pro-

file corresponds to the full path to the application it confines (dropping the first "/" character and con-

verting the others to a "." character. Hence, the filename of the profile for Firefox is

usr.lib.firefox.firefox.sh because the full path to Firefox is /usr/lib/firefox/firefox.sh.

Once a profile is defined, it is automatically activated when the application is started.

4.1 Anatomy of a profile

Per default any profile consists of four sections:

• #include: AppArmor provides an easy abstraction mechanism to group common file access re-

quirements. This makes writing new AppArmor profiles very simple by assembling the needed

building blocks for any given program. These building blocks can be included into a profile with

the help of the #include statement. The #include statement allows embedding the content of an ar-

bitrary text file into the profile: the statement is replaced with the specified file’s contents.

Format: #include /absolute/path Specifies that /absolute/path should be used

 #include relative/path Specifies that relative/path should be used

 (is relative to the current working directory)

 #include <magic/path> Most common usage; it will load magic/path

 relative to /etc/apparmor.d/ (default).

Example: #include <abstractions/fonts> Rules to access fonts and the font libraries

• capability: This section specifies the POSIX capabilities to which the application is restricted. See

the man pages (man capabilities) or one of the many resources on the web.

Format: capability <capability name>,

Example: capability setuid, Allow arbitrary manipulations of process UIDs.

• hats: While an AppArmor profile is applied to an application, there are times in which a sub pro-

cess of the program may need access differing from the main program. In this event, the sub pro-

cess may “change hats” or use an alternate sub-profile. Therefore, a profile may have more than

one sub-profile. Right now very few applications use hats (one of them is Apache).

Security Lab – Authorization in Linux 13

© ZHAW / SoE / InIT – Gürkan Gür, Stephan Neuhaus, Arno Wagner, Ariane Trammell

• rules: The rules section specifies what objects the application can access with what permissions.

There are two types of rules: file rules and network rules. Rules are discussed in more detail in the

next section.

Below you find a sample profile. Just have a look at it for now, explanations will follow:

#include <tunables/global> #include statement (mainly

 #includes some variables)

@{HOME}=/home/*/ /root/ #variable

/usr/bin/foo { #profile for /usr/bin/foo

 #include <abstractions/base> #include statement

 network inet tcp, #network rule

 capability setgid, #capability

 link /etc/sysconfig/foo -> /etc/foo.conf, #link rule

 /dev/{,u}random r, #file rule

 /lib/lib*.so* mr, #file rule

 /proc/[0-9]** r, #file rule

 /tmp/ r, #file rule

 /tmp/foo.pid wr, #file rule

 @{HOME}/.foo_file rw, #file rule

 @{HOME}/.foo_lock kw, #file rule

 deny /etc/shadow w, #file rule (deny)

 owner /home/*/** rw, #file rule: grant access to

 #files owned by the user as

 #which the application runs

 /bin/** px -> bin_generic #apply proile bin_generic

 #when starting an application

 #in /bin. Profile must exist.

}

4.1.1 Rules

Rules are basically a set of permissions applied to files and directories or network access. Note that the

next two sections just describe the basic syntax and give some examples. For detailed syntax infor-

mation, see the following two sections (4.1.2 and 4.1.3) or – for a more detailed explanation – see the

appendix (Section 6).

4.1.2 File rules

The syntax for file rules is as follows:

FILE RULE = (’"’ FILEGLOB ’"’ | FILEGLOB) ACCESS ’,’

Examples: /tmp/ r, allow read on directory /tmp (to list its content)

 /tmp/* rw, allow read/write on files directly in /tmp

 /tmp/*/ r, allow read on all directories directly in /tmp

 /tmp/** r, allow read on anything anywhere underneath /tmp

 /tmp/**/ r, allow read on directories anywhere underneath /tmp

Furthermore, these rules can be preceded by the keywords deny or owner. deny is typically used to

exclude selected files included by a coarse grained allow rule. If a rule allows, e.g., read access to eve-

rything in /etc, read access to /etc/shadow can be prevented by adding an appropriate deny rule. The

owner keyword restricts access to files owned by the user who requests access. Hence, if a user starts

an application with the rule owner /home/*/** rw, in its profile, the application is typically restricted

to read/write on files in this user’s home directory.

Security Lab – Authorization in Linux 14

© ZHAW / SoE / InIT – Gürkan Gür, Stephan Neuhaus, Arno Wagner, Ariane Trammell

What is a bit special is the distinction between reading/writing files and reading a directory:

• /tmp/* rw, allows to write (create, delete, modify) files in the tmp directory. But you don’t need

write access to the directory itself (as is needed with DAC), this is implicitly granted.

• To read the directory content (list the files and directories it contains), however, you explicitly

need read rights on the tmp directory. The rule above only grants the right to read individual files

in the directory (provided you know the path), but not to list them. As a result, /tmp/ r, is also

needed to grant the right to list the files.

Question: What rules are required to create, read and write files directly in the /etc directory and to

also list the content of the directory? As mentioned above, you need TWO rules to accomplish this.

4.1.3 Network rules

Network rules specify whether and with what restrictions networking is allowed. The rule syntax is:

NETWORK RULE = ’network’ [[DOMAIN] [TYPE] [I <PROTOCOL>]] ’,’

Examples: network, allows all networking

 network tcp, allows IPv4 and IPv6 TCP networking

 network inet tcp, allows IPv4 TCP networking

4.1.4 Fixing a broken profile

Before you are going to write a profile (almost) from scratch, we guide you step-by-step through the

process of fixing a profile. For this purpose, we deliberately “broke” the profile for the Firefox brows-

er.

Open a terminal and become root by entering su - (password: root). Use this terminal for all subse-

quent commands except for starting Firefox. Enter the following command to load the broken profile:

 /securitylab/authorization/setAppArmor.sh

The script installs the broken profile and restarts AppArmor to activate it.

Next, start Firefox (as user user, not as root!) and (1) try to open a web page and (2) try to save a page

to /home/user/Downloads by right-clicking and selecting Save Page As… Try different ways to access

a web page, e.g. by using the IP address instead of the host name (you can get the IP address of a host

name with the nslookup command in a terminal). Also, check the DAC permissions when trying to

save the page.

Question: What is the result of these tests and what do you think are the reasons for the observed re-

sults?

Question: What changes to the profile do you think could solve the first problem (open a web page)?

The changes should not open up the profile more than necessary. Don’t modify the profile yet!

Hint: This problem can be solved by using an #include statement. Check the files in

/etc/apparmor.d/abstractions for candidates.

Security Lab – Authorization in Linux 15

© ZHAW / SoE / InIT – Gürkan Gür, Stephan Neuhaus, Arno Wagner, Ariane Trammell

Question: What changes to the profile do you think could solve the second problem (save a page)?

The changes should not open up the profile more than necessary. Don’t modify the profile yet!

Question: What result do you expect if you started Firefox as root (don’t do it, just think about it)?

Justify your answer.

Now let’s see whether your two modifications from above are correct by checking what the automated

process for solving these problems would suggest. To do so, you’ll run the Firefox profile in complain

mode so that violations are logged to /var/log/syslog but not blocked. You then use the aa-logprof tool

to process the logged data and to modify the profile accordingly:

1. Put the Firefox profile in complain mode (only log violations, don’t prevent them):

aa-complain firefox

2. Add a mark to the /var/log/syslog file so that we can tell the aa-logprof tool where it should start

looking for information. You can do this with the following command (use e.g. a number for

<identifier> and use a different number when repeating this procedure).

echo "MARK-<identifier>" >> /var/log/syslog

3. Start Firefox (as user user, not as root) and redo the two tests from above. Then close Firefox.

4. Start the aa-logprof tool to review the complain mode output found in /var/log/syslog and to gen-

erate entries to fix the Firefox profile to allow denied operations:

aa-logprof -m "MARK-<identifier>"

5. aa-logprof should now propose changes to the profile. Check these proposals carefully, they

should be quite self-explanatory. With file rules, don’t just check the path but also the permissions

(r/w etc.).

Note 1: If aa-logprof proposes more than one fix, you can select which one should be used by

pressing the corresponding number and then press A to allow the related operations.

Note 2: Pressing G gives you additional fix options.

Note 3: As soon as you think you have included everything, you can select F.

6. After stepping through all of the proposals (or selecting F), you are asked whether you want to

save the changes. If you think you made a mistake, do not save the changes and start over.

7. Put the Firefox profile back to enforce mode:

aa-enforce firefox

8. Start Firefox and redo the tests. If the problems are solved now, you are done. Otherwise, go back

to 1 (as sometimes, more than one iteration is needed) or try to fix the profile

(usr.lib.firefox.firefox.sh) manually.

Security Lab – Authorization in Linux 16

© ZHAW / SoE / InIT – Gürkan Gür, Stephan Neuhaus, Arno Wagner, Ariane Trammell

Question: Which additions to the Firefox profile does aa-logprof propose to address the problems

encountered with the above tests? Are the proposed rules restrictive enough or could they be im-

proved? Check whether they match the changes you proposed in the answers to the two questions re-

garding this issue.

5 Part 3 Exercise: Protecting an Application using AppArmor

You should now be ready to protect a custom-made sample application called “ShareIt 2.0”. While

this application does not do anything useful, it accesses resources a file-sharing application would

probably also need to have access to. Your task is to write a profile allowing execution of the “ShareIt

2.0” application without giving it access to anything it does not need. The access control-relevant

specification of “ShareIt 2.0” is as follows:

• “ShareIt 2.0” can get the identity of the user which started the program, can do DNS lookups, and

can talk to other “ShareIt 2.0” clients using the UDP protocol. Note that all of this can be enabled

by including <abstractions/nameservice>.

• “ShareIt 2.0” reads configuration data from /etc/shareit.conf when it is started.

• “ShareIt 2.0” uses /tmp/shareit to store (write and read) temporary files

• “ShareIt 2.0” must be able to execute the shell commands rm, touch, and mkdir (all located in

/bin). The commands must be run with the same restrictions as “ShareIt 2.0”. Note that this re-

quires granting rix rights to the executables (r for read and ix for starting the application).

• The user executing the application should be able to store downloaded files in his home and read

data (including the home directory content) from his home.

• Access to the hidden files and directories (they always start with a .) located in the home directo-

ries (/home/<userid>/.<name>, e.g.: /home/user/.keystore) and anything underneath these directo-

ries must not be possible. Refer to the appendix for hints about how these files and directories can

be identified.

You can try to start the application (as user, not as root) by entering:

 /securitylab/authorization/shareit

Since the profile in /etc/apparmor.d/securitylab.authorization.shareit is set to enforcing mode and

does not yet meet the specification, the application should fail with an error.

Now, modify the profile – we recommend doing this manually – to meet the specification and test

whether the application runs and terminates without errors. Try to write the profile according to the

specification and then test and modify it if necessary. Ignore the line #include <abstractions/shareit>

that is already included in the profile as this contains additional rules needed for the “ShareIt 2.0” ap-

plication to run.

Note that when you modify the profile, you have to reload it for the changes to take effect. If you

switch mode (e.g., enforcing => complain or vice versa) this is done automatically. If your current di-

rectory is the directory where the application is located (/securitylab/authorization/), you can enter:

 (aa-enforce|aa-complain) shareit

Otherwise, you have to provide the full path to the profile:

 aa-enforce /etc/apparmor.d/securitylab.authorization.shareit

Security Lab – Authorization in Linux 17

© ZHAW / SoE / InIT – Gürkan Gür, Stephan Neuhaus, Arno Wagner, Ariane Trammell

If you don’t want to switch mode (which you are likely doing here as you should create the profile

manually), you can reload it by entering:

 apparmor_parser -r /etc/apparmor.d/securitylab.authorization.shareit

If running the application terminates without errors, you can run it with additional tests by using the

option --checkref. Once this works without errors as well, you have successfully completed this

task and are ready to get the corresponding lab points.

5.1 Cleanup

To reset the system to its original state, execute the command:

 /securitylab/authorization/unsetAppArmor.sh

Lab Points

In this lab, you can get 6 Lab Points. To get them, you must demonstrate to the instructor that you

have successfully solved the tasks in Sections 2 to 5:

• You get 2 points for successfully solving the exercises in Section 2. Demonstrate this by discuss-

ing your work with your lecturer.

• You get 2 points for successfully solving the exercise in Section 3. Demonstrate this by running

the script checkPolicy.pl.

• You get 2 points for successfully solving the exercise in Section 5. Demonstrate this by running

the shareit program with the --checkref option and by showing the profile you created for the

“ShareIt 2.0” application.

Security Lab – Authorization in Linux 18

© ZHAW / SoE / InIT – Gürkan Gür, Stephan Neuhaus, Arno Wagner, Ariane Trammell

6 Appendix: AppArmor reference

This appendix contains detailed information about the syntax of file- and network rules and a listing of

useful AppArmor commands.

6.1 File rules

The syntax for file rules is as follows:

FILE RULE = (’"’ FILEGLOB ’"’ | FILEGLOB) ACCESS ’,’

FILEGLOB = Must start with ’/’. ?*[]{}^ have special meanings; see below. It may include a VARI-

ABLE whose content is expanded before the rule is evaluated. Rules with embedded spaces or tabs

must be quoted. Rules must end with ’/’ to apply to directories.

Examples: /tmp/* All files directly in /tmp

 /tmp/*/ All directories directly in /tmp

 /tmp/** Files and directories anywhere underneath /tmp

 /tmp/**/ Directories anywhere underneath /tmp

 /tmp/.* All files starting with . directly in /tmp

 /tmp/.** Files and directories starting with . in /tmp and anything underneath

 these directories

Character Meaning

* Substitutes for any number of characters, except /

** Substitutes for any number of characters, including /

? Substitutes for any single character, except /

[abc] Substitutes for the single character a, b or c

[a-c] Substitutes for the single character a, b or c

{ ab,cd } Expand to one rule to match ab and another to match cd

[^a] Substitutes for any character except a
Table 3 Meaning of special characters in FILEGLOB

ACCESS = (’a’ | ’r’ | ’w’ | ’l’ | ’ix’ | ’ux’ | ’Ux’ | ’px’ | ’Px’ | ’m’) [ACCESS ...].

The following table contains short descriptions of the access modes relevant to all files and to applica-

tions.

 Mode Meaning

A
ll

 F
il

es

r Allows the application to read a file with this name

w Allows the application to write to a file with this name

l Allow the application to create a link to a file with this name

k Allows the application to lock a file with this name

a Allows the application to append data to a file of this name

A
p

p
li

ca
ti

o
n
s

ix If the application starts an application with this name, it inherits the parent’s profile

px, Px If the application starts an application with this name, a separate profile must exist

Cx,Cx If the application starts an application with this name, a local profile must exist

ux, Ux If the application starts an application with this name, no profile is applied.

m Allows a file with this name to be mapped into memory using the PROT_EXEC flag.

Table 4 Access modes for files

Security Lab – Authorization in Linux 19

© ZHAW / SoE / InIT – Gürkan Gür, Stephan Neuhaus, Arno Wagner, Ariane Trammell

6.2 Network rules

Network rules specify whether and with what restrictions networking is allowed. The rule syntax is:

NETWORK RULE = ’network’ [[DOMAIN] [TYPE] [I <PROTOCOL>]] ’,’

DOMAIN = (’inet’ | ’ax25’ | ’ipx’ | ’appletalk’ | ’netrom’ | ’bridge’ | ’atmpvc’ | ’x25’ | ’inet6’ | ’rose’ |

’netbeui’ | ’security’ | ’key’ | ’packet’ | ’ash’ | ’econet’ | ’atmsvc’ | ’sna’ | ’irda’ | ’pppox’ | ’wanpipe’ |

’bluetooth’) ’,’

TYPE = (’stream’ | ’dgram’ | ’seqpacket’ | ’rdm’ | ’raw’ | ’packet’)

PROTOCOL = (’tcp’ | ’udp’ | ’icmp’)

Examples: network #allows all networking

 network tcp #allows IPv4 and IPv6 TCP networking
 network inet tcp #allows IPv4 TCP networking

6.3 Commands

There are several useful AppArmor commands:

/etc/init.d/apparmor { start|stop|restart|try-restart|reload|force-reload|status|kill }

This command is used to start, stop, etc AppArmor service.

aa-complain <application name|full path and name of the profile>

Set an AppArmor profile to complain mode. Reloads the profile. Working with the application

name as parameter only works when the application is in the current directory or is in one of the

directories referenced by the PATH environment variable.

aa-enforce <application name|full path and name of the profile>

Set an AppArmor profile to enforce mode. Reloads the profile. Working with the application name

as parameter only works when the application is in the current directory or is in one of the directo-

ries referenced by the PATH environment variable.

aa-unconfined

Outputs a list of processes with open TCP or UDP ports that do not have AppArmor profiles load-

ed.

aa-logprof [-m <mark>] [-d <profile directory>] [-f <logfile to scan>]

aa-logprof is an interactive tool used to review the complain mode output found in the log-facilities

to which AppArmor logs (on Ubuntu typically /var/log/syslog) and to generate new entries in Ap-

pArmor profiles.

apparmor_parser [-r] /etc/apparmor.d/<profile>

This command is used to load (or reload with -r option) a profile into the kernel. So after modifying

a profile you can use this command to make AppArmor aware of them by reloading it..

addgroup banking

addgroup industry

addgroup ahas banking

addgroup wmei banking

addgroup wmei industry

addgroup krol industry

Grant access to run the applications

setfacl -m group:management:x applications

setfacl -m group:staff:x applications

setfacl -m group:ext:x applications

Security Lab – Authorization in Linux 20

© ZHAW / SoE / InIT – Gürkan Gür, Stephan Neuhaus, Arno Wagner, Ariane Trammell

setfacl -m group:management:rx applications/erp_client

setfacl -m group:ext:rx applications/timesheet_client

setfacl -m group:staff:rx applications/timesheet_client

Grant access to projects

setfacl -m group:ext:x `find projects/ -type d`

setfacl -m group:staff:x `find projects/ -type d`

setfacl -m group:consulting:rx projects/consulting

setfacl -m group:banking:rwx -R projects/consulting/Julius_Baer_I_EB_200908/

setfacl -m group:pm_banking:rwx -R projects/consulting/Julius_Baer_I_EB_200908/

setfacl -m group:industry:rwx -R projects/consulting/Xilinx_TrustDB_200704/

setfacl -m group:pm_industry:rwx -R projects/consulting/Xilinx_TrustDB_200704/

setfacl -m group:management:rx projects/consulting/*/report/

Employees can browse the staff and staff/* folder

setfacl -m group:staff:rx staff/

setfacl -m group:staff:rx staff/*/

Employees own their folder and have full control

chown ator:root -R staff/A/ator

chown ahas:root -R staff/A/ahas

chown dbau:root -R staff/D/dbau

chown fgla:root -R staff/F/fgla

chown wmei:root -R staff/W/wmei

chmod u+rwx `find staff/*/* -type d`

chmod u+rw `find staff/*/* -type f`

Employees can access files in all users’ public folders

setfacl -m group:staff:x staff/*/*/

setfacl -m group:staff:rx staff/*/*/public

www-data needs access to public_html

setfacl -m group:www-data:x staff/

setfacl -m group:www-data:x staff/*/

setfacl -m group:www-data:x staff/*/*/

setfacl -m group:www-data:rx staff/*/*/public_html

Checking for correctness:

md5sum /securitylab/authorization/checkPolicy.pl

11b3880723bbfce4c029b8042f7da917 /securitylab/authorization/checkPolicy.pl

/securitylab/authorization/checkPolicy.pl

Checking permissions for user with groups "staff"...

Checking permissions for user with groups "consulting:staff"...

Checking permissions for user with groups "management:staff"...

Checking permissions for user with groups "pm_banking:staff"...

Checking permissions for user with groups "pm_banking:ext"...

Checking permissions for user with groups "pm_industry:staff"...

Checking permissions for user with groups "pm_industry:ext"...

Checking permissions for user with groups "ext"...

Checking permissions for user "ator"...

Checking permissions for user "ahas"…

Security Lab – Authorization in Linux 21

© ZHAW / SoE / InIT – Gürkan Gür, Stephan Neuhaus, Arno Wagner, Ariane Trammell

Checking permissions for user "dbau"...

Checking permissions for user "fgla"...

Checking permissions for user "krol"...

Checking permissions for user "wmei"...

Checking permissions for user "www-data"...

Group memberships of ator : staff consulting pm_banking

Group memberships of krol : ext industry

Group memberships of wmei : staff consulting banking industry

