----------------------------------------------------------- -- If Else and Guards ----------------------------------------------------------- {- IfElse * If-else expressions denote "normal" values -} three :: Integer three = if True then 3 else 4 four :: Integer four = if False then 0 else 4 collatzNext :: Integer -> Integer collatzNext x = if x `mod` 2 == 0 then x `div` 2 else 3*x+1 {- Nesting If-else expressions with multiple cases are possible with nesting. -} describe :: Integer -> String describe x = if x < 3 then "small" else if x < 5 then "medium" else "large" {- Guards An alternative way to declare functions by case analysis are guards. -} describe' :: Integer -> String describe' x -- First match wins | x < 3 = "small" | x < 4 = "medium" | otherwise = "large" sign :: Integer -> Integer sign x | x < 0 = -1 | x > 0 = 1 | otherwise = 0 {- Exercise rewrite the function 'fIfElse' using guards. -} fIfElse :: Integer -> String fIfElse n = if n `mod` 2 == 1 then if n `mod` 3 /= 0 then "Oddity" else "Odd" else "Even" fGuard :: Integer -> String fGuard n | n `mod` 2 == 0 = "Even" | n `mod` 3 == 0 = "Odd" | otherwise = "Oddity" ----------------------------------------------------------- -- Cases and pattern matching ----------------------------------------------------------- {- Cases 1 Aside from if-else and guards, Haskell also allows for functions to be declared in separate clauses. -} count :: Integer -> String count 0 = "zero" count 1 = "one" count 2 = "two" count _ = "I don't know" {- Cases 2 There is also an alternative syntax for cases (that make declarations a bit easier to maintain in some cases). -} count' :: Integer -> String count' n = case n of 0 -> "zero" 1 -> "one" 2 -> "two" _ -> "I don't know" {- Cases Importance The true "power" of cases is in conjunction with custom types and pattern matching. We will learn how this works later. -} data Shape = Rectangle Float Float | Circle Float circumference :: Shape -> Float circumference shape = case shape of Rectangle length width -> 2*length + 2*width Circle radius -> 2*radius*pi {- Exercise Define a function 'area :: Shape -> Float' to compute the area of any given shape. Use spearate cases such as in 'Case 1' above. -} area :: Shape -> Float area (Rectangle l w) = l*w area (Circle r) = r*r*pi ----------------------------------------------------------- -- Let and where ----------------------------------------------------------- {- Let Bindings It is possible to name one or more values in a "let-block" and these abbreviations in the subsequent expression. -} five :: Integer five = let x = 2 y = x + 1 in x + y myFunc :: Integer -> Integer myFunc x = let complicated = x `mod` 2 == 0 && x `mod` 4 /= 0 in if complicated then x `div` 2 else x + 1 {- Where Where is the same as let, but it does not preceed but follow a "main" declaration. -} six :: Integer six = x + y where x = 2 y = x + 2 myFunc' :: Integer -> Integer myFunc' x = (magicNumber * x) + 1 where magicNumber = x + 42