42 lines
No EOL
935 B
Haskell
42 lines
No EOL
935 B
Haskell
myMap :: (a -> b) -> [a] -> [b]
|
|
-- myMap f [] = []
|
|
-- myMap f (x : xs) = (f x) : (myMap f xs)
|
|
|
|
-- inputs: [a, b, c]
|
|
-- desired output: [a', b', c']
|
|
-- non end recursive result:
|
|
-- myMap f [a, b, c]
|
|
-- (f a) : (myMap f [b, c])
|
|
-- (f a) : ((f b) : (myMap f [c]))
|
|
-- (f a) : ((f b) : ((f c) : myMap f []))
|
|
-- (f a) : ((f b) : ((f c) : myMap f []))
|
|
-- (f a) : ((f b) : ((f c) : []))
|
|
-- a' : (b' : (c' : []))
|
|
-- [a', b', c']
|
|
|
|
-- ((a' : b') : c')
|
|
-- ((f a) : (f b)) : f c
|
|
|
|
myMap f = realMap []
|
|
where
|
|
realMap acc [] = acc
|
|
realMap acc (x : xs) = realMap (acc ++ [f x]) xs
|
|
|
|
-- >>> myMap ((+1)) [0, 2, 2, 6]
|
|
-- [1,3,3,7]
|
|
--
|
|
|
|
|
|
fakTR :: Integer -> Integer
|
|
fakTR = fakTR_ 1
|
|
where
|
|
fakTR_ :: Integer -> Integer -> Integer
|
|
fakTR_ acc 0 = acc
|
|
fakTR_ acc n = fakTR_ (n * acc) (n -1)
|
|
|
|
fakC :: Integer -> Integer
|
|
fakC = fakC_ (const 1)
|
|
where
|
|
fakC_ f n
|
|
| n == 0 = f n
|
|
| otherwise = fakC_ (\ x -> n * (f x)) $ n - 1 |