70 lines
1.5 KiB
Haskell
70 lines
1.5 KiB
Haskell
--------------------
|
|
-- Exercise 1
|
|
--------------------
|
|
prim c g 0 x = c x
|
|
prim c g n x = g (f (n - 1) x) (n - 1) x
|
|
where
|
|
f = prim c g
|
|
|
|
m2 :: Integer -> () -> Integer
|
|
m2 n x = prim (\_ -> 0) (\a -> \n -> \x -> a + 2) n x
|
|
|
|
-- >>> print (m2 8 ())
|
|
-- 16
|
|
--
|
|
|
|
e2 :: Integer -> () -> Integer
|
|
e2 n x = prim (\_ -> 1) (\a -> \n -> \x -> a * 2) n x
|
|
-- >>> print (e2 4 ())
|
|
-- 16
|
|
--
|
|
|
|
exp :: Integer -> Integer -> Integer
|
|
exp x n = prim (\_ -> 1) (\a -> \n -> \x -> a * x) n x
|
|
-- >>> print (Main.exp 2 3)
|
|
-- 8
|
|
--
|
|
|
|
fact :: Integer -> () -> Integer
|
|
fact n x = prim (\_ -> 1) (\a -> \n -> \x -> a * (n + 1)) n x
|
|
-- >>> print (fact 3 ())
|
|
-- 6
|
|
--
|
|
|
|
--------------------
|
|
-- Exercise 2
|
|
--------------------
|
|
f g x
|
|
| x == 0 = g x
|
|
| otherwise = g $ f g (x - 1)
|
|
-- Nicht endrekursiv
|
|
|
|
length xs = case xs of
|
|
[] -> 0
|
|
x : xs -> (+1) $ Main.length xs
|
|
-- ist endrekursiv
|
|
|
|
length' ls = aux
|
|
$ map ( const 1)
|
|
$ ls
|
|
where
|
|
aux ys = case ys of
|
|
[] -> 0
|
|
[x] -> x
|
|
x : xs -> aux $ map (\y -> (+1) x ) xs
|
|
-- length' und aux sind nicht endrekursiv
|
|
|
|
-- sieve :: ( a -> a -> Bool ) -> [ a ] -> [ a ]
|
|
-- sieve pred xs = case xs of
|
|
-- [] -> []
|
|
-- x : xs -> x :( sieve pred $ filter ( pred x ) xs )
|
|
sieve :: (a -> a -> Bool) -> [a] -> [a]
|
|
sieve pred xs = realSieve [] xs
|
|
where
|
|
realSieve acc [] = acc
|
|
realSieve acc (x : xs) = realSieve (acc ++ [x]) (filter (pred x) xs)
|
|
|
|
-- >>> sieve (\ x -> \ y -> y > x) [1, 2, 3, 1, 2, 9, 7]
|
|
-- [1,2,3,9]
|
|
--
|