Add final remarks to integrals
This commit is contained in:
parent
f61c3f2b3c
commit
a10320e9bf
1 changed files with 31 additions and 0 deletions
|
@ -549,6 +549,37 @@ $$\begin{align*}
|
|||
&= \frac{\sin(x) \cdot x + \cos(x)}{x}
|
||||
\end{align*}$$
|
||||
|
||||
## Anwendung der Integralrechnung
|
||||
### Der Mittelwert
|
||||
Der Mittelwert einer Funktion errechnet sich mit der folgenden Formel:
|
||||
|
||||
$$\mu = \frac{1}{b - a} \cdot \int_a^b{f(x)}dx$$
|
||||
|
||||
### Die Arbeit
|
||||
$$\int_{s_1}^{s_2}{F(s)}ds$$
|
||||
|
||||
### Rotationskörper
|
||||
#### Rotationskörper um die $x$-Achse
|
||||
$$V = \pi \cdot \int_a^b{(f(x))^2}dx$$
|
||||
|
||||
#### Rotationskörper um die $y$-Achse
|
||||
$$V = \pi \cdot \int_c^d{(g(y))^2}dy$$
|
||||
|
||||
#### Mantelfläche eines Rotationskörpers
|
||||
$$M = 2 \cdot \pi \cdot \int_a^b{y \cdot \sqrt{1 + (y')^2}}dx$$
|
||||
|
||||
### Bogenlänge einer Kurve
|
||||
$$s = \int_a^b{\sqrt{1 + (y')^2}}dx$$
|
||||
|
||||
### Schwerpunkt
|
||||
$$x_S = \frac{1}{A} \cdot \int_a^b{x \cdot (f_o(x) - f_u(x))}dx$$
|
||||
$$y_S = \frac{1}{2A} \cdot \int_a^b{(f_o^2(x) - f_u^2(x))}dx$$
|
||||
|
||||
### Schwerpunkt eines Rotationskörpers
|
||||
$$x_S = \frac{\pi}{V} \cdot \int_a^b{x \cdot f^2(x)}dx$$
|
||||
$$y_S = 0$$
|
||||
$$z_S = 0$$
|
||||
|
||||
https://tu-freiberg.de/sites/default/files/media/fakultaet-fuer-mathematik-und-informatik-fakultaet-1-9277/lorz/grundintegrale.pdf
|
||||
|
||||
[^Derivation]: [Ableitungen][Derivation]
|
||||
|
|
Loading…
Reference in a new issue