Add chapter about the Jacobi method

This commit is contained in:
Manuel Thalmann 2023-01-11 18:59:38 +01:00
parent b9e387d394
commit beda0e3dec

View file

@ -58,6 +58,10 @@
- [Vorgang](#vorgang)
- [Fehlerrechnung bei linearen Gleichungssystemen](#fehlerrechnung-bei-linearen-gleichungssystemen)
- [Vektor- und Matrixnormen](#vektor--und-matrixnormen)
- [Aufwand-Abschätzung](#aufwand-abschätzung)
- [Iterative Verfahren zur Lösung von Gleichungssystemen](#iterative-verfahren-zur-lösung-von-gleichungssystemen)
- [$LDR$-Zerlegung](#ldr-zerlegung)
- [Jacobi-Verfahren](#jacobi-verfahren)
- [Formelbuchstaben](#formelbuchstaben)
- [Glossar](#glossar)
@ -1002,6 +1006,113 @@ $$\frac{||x - \tilde{x}||}{||x||} \le
</div>
### Aufwand-Abschätzung
<div class="formula">
***Kennzahlen:***
Lösung Linearer Gleichungssysteme mit Hilfe von...
Gauss-Elimination:
$$\frac{2}{3}n^3 + \frac{5}{2}n^2 - \frac{13}{6}n$$
$LR$-Zerlegung:
$$\frac{2}{3}n^3 + \frac{7}{2}n^2 + \frac{13}{6}n$$
$QR$-Zerlegung:
$$\frac{5}{3}n^3 + 4n^2 + \frac{7}{3}n - 7$$
</div>
<div class="formula">
***Ordnung $O(n)$***
Die Ordnung $O(n)$ der zuvor genannten Verfahren entspricht der höchsten Potenz von $n$, welche in der Formel zur Berechnung des Aufwands vorkommt.
Das bedeutet also folgendes:
Ordnung von Gauss-Elimination, $LR$-Zerlegung und $QR$-Zerlegung:
$$O(n^3)$$
</div>
## Iterative Verfahren zur Lösung von Gleichungssystemen
### $LDR$-Zerlegung
Für die $LDR$-Zerlegung wird die Matrix $A$ in drei Matrizen $L$, $D$ und $R$ aufgeteilt, wobei $L$ eine untere Dreiecksmatrix, $D$ eine Diagonalmatrix und $R$ eine obere Dreiecksmatrix ist. Das bedeutet:
$$A = L + D + R$$
Mit
$$L = \left(
\begin{matrix}
0 & 0 & 0 & \cdots & 0 \\
a_{21} & 0 & 0 & \cdots & 0 \\
a_{31} & a_{32} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn - 1} & 0
\end{matrix}
\right)$$
$$D = \left(
\begin{matrix}
a_{11} & 0 & 0 & \cdots & 0 \\
0 & a_{22} & 0 & \cdots & 0 \\
0 & 0 & a_{33} & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & a_{nn}
\end{matrix}
\right)$$
$$R = \left(
\begin{matrix}
0 & a_{12} & a_{13} & \cdots & a_{1n} \\
0 & 0 & a_{23} & \cdots & a_{2n} \\
0 & 0 & 0 & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & a_{n-1,n} \\
0 & 0 & \cdots & 0 & 0
\end{matrix}
\right)$$
> ***Wichtig:***
> Hierbei handelt es sich nicht um $L$ und $R$ aus der $LR$-Zerlegung!
### Jacobi-Verfahren
Das Jacobi-Verfahren ist ein iteratives Verfahren, welches nach jeder Iteration näher mit der tatsächlichen Lösung $x$ konvergiert.
Das Jacobi-Verfahren ist auch bekannt als **Gesamtschrittverfahren**.
<div class="formula">
***Jacobi-Verfahren:***
Zunächst beginnt man mit $x^{(0)}$ als ein Vektor, der nur aus $0$en besteht.
$$x^{(k + 1)} = -D^{-1} \cdot (L + R) \cdot x^{(k)} + D^{-1} \cdot b$$
Für die Berechnung einzelner Elemente des Vektors $x^{(k + 1)}$ gilt:
Für $i$ von $1$ bis $n$:
$$x^{(k + 1)}_i = \frac{1}{a_{ii}} \cdot
\left(
b_i - \sum_{j = 1,j \not = i}^n a_{ij} \cdot x^{(k)}_j
\right)$$
</div>
<div class="letters">
- $x^{(k)}$: Die Annäherung an $x$ nach der $k$-ten Iteration
</div>
## Formelbuchstaben
<div class="letters">
@ -1025,6 +1136,7 @@ $$\frac{||x - \tilde{x}||}{||x||} \le
- $x$: Darzustellender Wert
- $x_n$: Die $n$-te Approximation von $x$
- $\tilde{x}$: Approximation/Annäherung an $x$
- $x^{(k)}$: Die Annäherung von $x$ in der $k$-ten Iteration
</div>