Compare commits

..

4 commits

5 changed files with 469 additions and 2 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

View file

@ -4,7 +4,12 @@
margin-bottom: 2px;
color: black;
padding: 0.5rem;
border: solid black 2px;
padding-bottom: 1px;
margin-bottom: 0.5rem;
}
.formula p:last-child, .letters p:last-child {
padding-bottom: 0;
}
.formula {
@ -42,6 +47,15 @@
- [Formelbuchstaben zu Nullstellenproblem](#formelbuchstaben-zu-nullstellenproblem)
- [Lineare Gleichungssysteme](#lineare-gleichungssysteme)
- [Lernziele](#lernziele)
- [Eigenschaften](#eigenschaften)
- [Dreiecks-Matrizen](#dreiecks-matrizen)
- [Der Gauss-Algorithmus](#der-gauss-algorithmus)
- [Fehlerfortpflanzung und Pivotisierung](#fehlerfortpflanzung-und-pivotisierung)
- [Determinanten-Bestimmung](#determinanten-bestimmung)
- [Die $LR$-Zerlegung](#die-lr-zerlegung)
- [$QR$-Zerlegung](#qr-zerlegung)
- [Housholder-Matrizen](#housholder-matrizen)
- [Vorgang](#vorgang)
- [Formelbuchstaben](#formelbuchstaben)
- [Glossar](#glossar)
@ -54,7 +68,7 @@
### Arten von Lösungen
- Direkte Verfahren - Exakte Lösung nach endlicher Zeit
- Näherungsverfahren - Approximation nach begrenzter Anzahl Rechenschritte
- Näherungsverfahren/Iteratives Verfahren - Approximation nach begrenzter Anzahl Rechenschritte
### Verbindung zur Informatik
- Effiziente Berechnung numerischer Algorithmen
@ -188,6 +202,9 @@ Es wird der korrekte Wert $x$ für eine Aufgabe gesucht.
> - Ein Threshold von $0$ ergibt das genaue Resultat
### Fixpunktiteration
![](FixedPointIteration.png)
Ein möglicher Ansatz für ein solches Problem ist eine Fixpunktiteration.
Der Vorgang für eine solche ist folgende:
@ -305,6 +322,9 @@ Folgendermassen kann dieser aufgestellt werden:
4. Die a-priori und die a-posteriori Abschätzung kann nun beliebig angewendet werden. Hierbei wird für $x_0$ der Wert $a$ verwendet.
### Newton-Verfahren
![](NewtonMethod.png)
Das Newton-Verfahren erreicht die Konvergenz (d.h. das (approximierte) Resultat) um einiges schneller.
Hierfür wird die Funktion $f$ in der Nullstellenform benötigt ($f(x) = \text{[...]} = 0$).
@ -338,6 +358,8 @@ Das Ergebnis ist wahr, wenn mit dem gewählten $x$ eine Konvergenz erreicht werd
### Sekantenverfahren
![](SecantMethod.png)
<div class="formula">
$$x_{n + 1} = x_n - \frac{x_n - x_{n - 1}}{f(x_n) - f(x_{n - 1})} \cdot f(x_n)$$
@ -425,17 +447,462 @@ Vorgang:
- [ ] Fehlerabschätzungen
- [ ] Eigenwerte und Eigenvektoren von Matrizen berechnen
<div class="letters">
**Lineares Gleichungssystem:**
Lineare Gleichungssysteme haben jeweils die Form $A \cdot x = b$ wobei $A$ und $b$ gegeben und $x$ gesucht ist:
$$A = \left(
\begin{matrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{matrix}
\right),
x = \left(
\begin{matrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{matrix}
\right),
b = \left(
\begin{matrix}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{matrix}
\right)$$
</div>
### Eigenschaften
- Gleich viele gesuchte Variablen $x_n$ wie Gleichungen $n$. Folglich:
- Die Matrix $A$ ist eine quadratische Matrix mit Dimensionen $n \times n$
- $A$ ist invertierbar
- $A$ hat eine Determinante $\det(A)$
### Dreiecks-Matrizen
<div class="letters">
***$L$: Untere Dreiecksmatrix***
Eine Matrix, die in der oberen rechten Ecke nur den Wert $0$ und auf der Diagonale nur den Wert $1$ hat. Eine Untere Dreiecksmatrix hat also folgende Form:
$$L = \left(
\begin{matrix}
1 & 0 & 0 & \cdots & 0 \\
l_{21} & 1 & 0 & \cdots & 0 \\
l_{31} & l_{32} & 1 & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & 0 \\
l_{n1} & l_{n2} & \cdots & l_{nn - 1} & 1
\end{matrix}
\right)$$
***$R$: Obere Dreiecksmatrix***
Eine Matrix, die unten links von der Diagonale nur den Wert $0$ beinhaltet. Eine Obere Dreiecksmatrix hat dementsprechend folgende Form:
$$R = \left(
\begin{matrix}
r_{11} & r_{12} & r_{13} & \cdots & r_{1n} \\
0 & r_{22} & r_{23} & \cdots & r_{2n} \\
0 & 0 & r_{33} & \cdots & r_{3n} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & r_{nn}
\end{matrix}
\right)$$
</div>
***Code-Beispiele:***
_Umwandlung in $R$-Matrix:_
```py
for i in range(n):
if A[i, i] == 0:
index = -1
for j in range(i + 1, n):
if A[j, i] > 0:
index = j
if index == -1:
raise Exception("Invalid Matrix")
else:
# Swap lines
A[[i, index]] = A[[index, i]]
for j in range(i + 1, n):
factor = A[j, i] / A[i, i]
A[j] = A[j] - (factor * A[i])
```
### Der Gauss-Algorithmus
Der Gauss-Algorithmus basiert darauf, dass ein lineares Gleichungssystem leicht lösbar ist, falls $A$ eine obere Dreiecksmatrix ist. $A$ muss also hierfür die Form einer oberen Dreiecksmatrix $R$ haben.
<div class="formula">
***Gauss-Algorithmus:***
$$x_i = \frac{b_i - \sum_{j = i + 1}^n{a_{ij} \cdot x_j}}{a_{ii}}, i = n, n - 1, \dots, 1$$
</div>
Um den Gauss-Algorithmus anzuwenden, muss die Matrix $A$ erst in eine $R$-Matrix umgewandelt werden. Dies funktioniert wie folgt:
1. Mit $i$ von $1$ bis $n$
2. Falls $a_{ii}$ den Wert $0$ hat:
1. Mit $j$ von $i + 1$ bis $n$
2. Prüfen, ob $a_{ji}$ einen höheren Wert als $0$ hat
- Falls Zeile gefunden wurde:
- $a_{i}$ mit $a_{j}$ tauschen
- $b_{i}$ mit $b_{j}$ tauschen
- Sonst beenden: ungültige Matrix
3. Mit $j$ von $i + 1$ bis $n$
1. $a_k = a_k - \frac{a_{ki}}{a_{ii}} \cdot a_i$
2. $b_k = b_k - \frac{a_{ki}}{a_{ii}} \cdot b_i$
***Code-Beispiel:***
```py
from numpy import array, zeros
def gaussMethod(A, b):
A = array(A)
n = A.shape[0]
A = A.reshape((n, n))
b = array(b).reshape((n))
result = zeros(n)
# Convert to R-Matrix
for i in range(n):
maxIndex = i
for j in range(i + 1, n):
if A[j, i] > A[maxIndex, i]:
maxIndex = j
# Swap lines
A[[i, maxIndex]] = A[[maxIndex, i]]
b[[i, maxIndex]] = b[[maxIndex, i]]
for j in range(i + 1, n):
factor = A[j, i] / A[i, i]
A[j] = A[j] - (factor * A[i])
b[j] = b[j] - (factor * b[i])
# Calculate result
for index in range(n, 0, -1):
i = index - 1
value = b[i]
for j in range(i, n):
value = value - A[i, j] * result[j]
result[i] = value / A[i, i]
return result.reshape((n, 1))
```
### Fehlerfortpflanzung und Pivotisierung
- Da beim Umwandeln einer Matrix $A$ in die $R$-Form Zeilen in jedem Schritt mit dem Faktor $\lambda = \frac{a_{ji}}{a_{ii}}$ multipliziert werden, vergrössert sich der Schritt immer um $|\lambda|$
- $\lambda$ kann klein gehalten werden, indem Zeilen der Grösse nach sortiert werden
- In den Code-Beispielen ist dies bereits berücksichtigt
### Determinanten-Bestimmung
Die Determinante einer Matrix $A$ lässt sich einfach berechnen, sobald sie in die $R$-Form gebracht wurde mit folgender Formel:
<div class="formula">
Determinanten-Bestimmung mit Matrix $\tilde{A}$ (die Matrix $A$ in der $R$-Form):
$$\det(A) =
(-1)^l \cdot \det(\tilde{A}) =
(-1)^l \cdot \prod_{i = 1}^n{\tilde{a_{ii}}}$$
</div>
***Code-Beispiel:***
```py
from numpy import array
def det(A):
l = 0
n = A.shape[0]
A = A.reshape((n, n))
# Convert to R-Matrix
for i in range(n):
maxIndex = i
for j in range(i + 1, n):
if A[j, i] > A[maxIndex, i]:
maxIndex = j
# Swap lines
A[[i, maxIndex]] = A[[maxIndex, i]]
l = l + 1
for j in range(i + 1, n):
factor = A[j, i] / A[i, i]
A[j] = A[j] - (factor * A[i])
result = 1
for i in range(n):
result = result * A[i, i]
return (-1 ** l) * result
```
### Die $LR$-Zerlegung
In der $LR$-Zerlegung wird die Matrix $A$ in die Matrizen $L$ und $R$ aufgeteilt, sodass $A = L \cdot R$ gilt.
Alternative Namen dieses Vorgangs sind ***$LR$-Faktorisierung*** und $LU$-decomposition.
<div class="formula">
Für in $L$ und $R$ zerlegte Matrizen gilt:
$$A \cdot x = b$$
und
$$A \cdot x = L \cdot R \cdot x = L \cdot y = b$$
Aufwand: Berechnung der $LR$-Zerlegung mit Gauss-Algorithmus benötigt ca. $\frac{2}{3}n^3$ Punktoperationen.
</div>
Falls Zeilenvertauschungen stattfinden, entsteht bei der $LR$-Zerlegung eine zusätzliche Permutations-Matrix $P$.
<div class="formula">
Für $L$ und $R$ zerlegte Matrizen mit Permutation $P$ gilt:
$$P \cdot A = L \cdot R$$
$$L \cdot y = P \cdot b$$
$$R \cdot x = y$$
</div>
Das Verfahren für die $LR$-Zerlegung ist identisch zu den Schritten bei der Umwandlung in eine $R$-Matrix. Jedoch wird jeweils der Wert $l_{ji}$ in der (zu Beginn) leeren Matrix $L$ mit dem im aktuellen Eliminationsschritt gesetzt. Zudem muss bei Vertauschungen die Permutations-Matrix $P$ entsprechend angepasst werden:
***Code-Beispiel:***
```py
from numpy import array, identity, zeros
def decomposite(A):
l = 0
n = A.shape[0]
R = A.reshape((n, n))
L = zeros((n, n))
P = identity((n, n))
# Convert to LR-Matrix
for i in range(n):
maxIndex = i
for j in range(i + 1, n):
if A[j, i] > A[maxIndex, i]:
maxIndex = j
# Swap lines
Pn = identity((n, n))
A[[i, maxIndex]] = A[[maxIndex, i]]
Pn[[i, maxIndex]] = Pn[[maxIndex, i]]
P = P * Pn
for j in range(i + 1, n):
factor = R[j, i] / R[i, i]
L[j, i] = factor
R[j] = R[j] - (factor * R[i])
result = 1
for i in range(n):
result = result * R[i, i]
return [L, R, P]
```
Wenn die $LR$-Zerlegung, wie in diesem Code, Zeilenaustausch und das Berechnen von $P$ involviert, spricht man von einer $LR$-Zerlegung mit **Spaltenmaximum-Strategie**.
***Vorgang:***
1. Gemäss vorhergehender Beschreibung und Code-Beispiel die Matrizen $L$ und $R$ berechnen
2. Mit Hilfe des Gauss-Algorithmus $L \cdot y = P \cdot b$ nach $y$ auflösen
3. Mit Hilfe des Gauss-Algorithmus $R \cdot x = y$ nach $x$ auflösen
### $QR$-Zerlegung
- Die Matrix $A$ wird in eine orthogonale Matrix $Q$ und eine obere Dreiecksmatrix $R$ zerlegt.
- Orthogonal-Matrizen beschreiben Drehungen, Spiegelungen oder Kombinationen daraus.
- Eine $QR$-Zerlegung erfordert ca. $\frac{5}{3}n^3$ Punktoperationen - ca. doppelt so viel wie die $LR$-Zerlegung.
<div class="formula">
***Orthogonal-Matrix:***
Eine Matrix $Q$ ist orthogonal, wenn folgendes gilt:
$$Q^T \cdot Q = I_n$$
($x^T$ steht hierbei für eine **T**ransformation)
</div>
#### Housholder-Matrizen
Im Rahmen der Berechnung der Matrizen $Q$ und $R$ werden sogenannte "Housholder-Matrizen" berechnet.
<div class="formula">
***Housholder-Matrizen:***
Sei $u$ ein Vektor mit beliebig vielen Dimensionen, für den gilt:
$$|u| = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2} = 1$$
Die Householder-Matrix hat folgende Eigenschaft:
$$H := I_n - 2 \cdot u \cdot u^T$$
Für Housholder-Matrizen gilt zudem folgendes:
$$H = H^T = H^{-1}$$
und
$$H \cdot H = I_n$$
</div>
***Berechnung einer Housholder-Matrix***
Beispiel der Berechnung einer Housholder-Matrix zur ersten Spalte der Matrix $A$.
> Für die Berechnung wird ein Einheitsvektor $e$ benötigt, welcher genauso viele Werte hat, wie die Matrix Dimensionen. Ein Einheitsvektor hat im ersten Feld den Wert $1$ und in allen anderen Feldern der Wert $0$.
>
> Für eine Matrix $A$ mit der Dimension $n = 3$ lautet der Einheitsvektor $e$ also wie folgt:
> $$e = \left(\begin{matrix}
> 1 \\
> 0 \\
> 0
> \end{matrix}\right)
1. Vektor $v$ bestimmen
$$v = a_1 + sign(a_{11}) \cdot |a_1| \cdot e$$
2. Vektor normieren:
$$u = \frac{1}{|v|} \cdot v =
\frac{1}{\sqrt{1^2 + 2^2 + 3^2}} \cdot
\left(\begin{matrix}
1 \\
2 \\
3
\end{matrix}\right) =
\frac{1}{\sqrt{14}} \cdot
\left(\begin{matrix}
1 \\
2 \\
3
\end{matrix}\right)$$
2. Die Housholder-Matrix $H = I_n - 2 \cdot u \cdot u^T$ berechnen.
$$H =
\left(\begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{matrix}\right) -
2 \cdot \frac{1}{\sqrt{14}} \cdot
\left(\begin{matrix}
1 \\
2 \\
3
\end{matrix}\right) \cdot
\frac{1}{\sqrt{14}} \cdot
\left(\begin{matrix}
1 & 2 & 3
\end{matrix}\right) \\
H =
\left(\begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{matrix}\right) -
2 \cdot \frac{1}{14} \cdot
\left(\begin{matrix}
1 & 2 & 3 \\
2 & 4 & 6 \\
3 & 6 & 9
\end{matrix}\right) =
-\frac{1}{7} \cdot
\left(\begin{matrix}
-6 & 2 & 3 \\
2 & -3 & 6 \\
3 & 6 & 2
\end{matrix}\right)$$
<div class="letters">
- $H$: Housholder-Matrix
- $I$: Identitäts-Matrix
- $n$: Anzahl Dimensionen der Matrix
</div>
#### Vorgang
Im Rahmen des Vorgangs entspricht $A_1$ der Matrix $A$.
Die $QR$-Zerlegung kann folgendermassen durchgeführt werden:
1. $R = A$
2. $Q = I_n$
3. Für $i$ von $1$ bis $n - 1$
1. Gemäss vorheriger Anleitung Householder-Matrix $H_i$ für die erste Spalte von $A_i$ berechnen
2. Householder-Matrix um Identitäts-Matrix erweitern. Beispiel:
![](ExpandHouseholder.png)
3. Erweiterte Householder-Matrix als $Q_i$ speichern
4. $R = Q_i \cdot R$
5. $Q = Q \cdot Q_i^T$
***Code-Beispiel:***
```py
from numpy import array, identity, sign, sqrt, square, sum, zeros
def qrDecomposition(A):
A = array(A)
n = A.shape[0]
R = A.reshape((n, n))
Q = identity(n)
for i in range(n - 1):
I = identity(n - i)
Qi = identity(n)
e = zeros((n - i, 1))
e[0][0] = 1
a = R[i:,i:i + 1]
v = a + sign(a[0]) * sqrt(sum(square(a))) * e
u = (1 / sqrt(sum(square(v)))) * v
H = I - 2 * u @ u.T
Qi[i:,i:] = H
R = Qi @ R
Q = Q @ Qi.T
return [Q, R]
```
## Formelbuchstaben
<div class="letters">
- $\alpha$: Lipschitz-Konstante (siehe Fixpunktsatz)
- $[a,b]$: Das Untersuchungs-Interval für den Banachschen Fixpunktsatz
- $A$: Matrix eines linearen Gleichungssystems
- $\tilde{A}$: Umgewandelte Version der Matrix $A$
- $A^T$: Transformierte Matrix $A$
- $b$: Das gewünschte Resultat eines linearen Gleichungssystems
- $B$: Basis der Maschinenzahl
- $e$: Exponent der Maschinenzahl
- $H$: Housholder-Matrix (siehe $QR$-Zerlegung)
- $I$: Identitäts-Matrix (Matrix, überall den Wert $0$ und auf der Diagonalen den Wert $1$ hat)
- $K$: Konditionszahl
- $L$: Untere Dreiecksmatrix/Normierte Matrix
- $m$: Mantisse (Darstellbarer Bereich der Maschinenzahl)
- $n$: Anzahl möglicher Stellen der Mantisse $m$
- $q$: Konvergenz-Ordnung
- $Q$: Orthogonal-Matrix in der $QR$-Zerlegung
- $R$: Obere Dreiecksmatrix
- $x$: Darzustellender Wert
- $x_n$: Die $n$-te Approximation von $x$
- $\tilde{x}$: Approximation/Annäherung an $x$